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The correct relativistic Pauli-Breit Hamiltonian for spin-orbit and spin-other-orbit interaction 
in atoms is adapted for use with diatomic molecules. The relation between the fundamental molecular 
Hamiltonian thus obtained and the phenomenological operator AL. S is investigated, and some 
theoretical considerations are made concerning Van Vleck's hypothesis of pure precession. A formula 
convenient for ab initio calculation of the spin-orbit coupling constant is derived, assuming the 
electronic functions to be represented by a Slater determinant of one-electron molecular orbitals. 
Finally a method for theoretical determination of the sign of the spin-orbit coupling constant is 
demonstrated by several examples. 

Der korrekte Pauli-Breit-Hamiltonoperator fur die verschiedenen Spin-Bahn-Wechselwirkungen 
in Atomen wird der Anwendung bei zweiatomigen Molekiilen angepaBt. Die Beziehung zwischen 
den so erhaltenen molekularen Hamiltonoperator und dem ph~inomenologisch begri.indeten Operator 
AL. S wird untersucht, und einige Oberlegungen zur Van Vleckschen Hypothese reiner Pr~zession 
werden dargesteUt. Eine Formel fiir die ab initio-Besprechung der Spin-Bahn-Kopplungs-Konstanten 
wird abgeleitet, wobei angenommen wird, dab die elektronische Wellenfunktion dutch eine Slater- 
determinante dargestellt wird, die aus Ein-Elektronen-MO's aufgebaut ist. SchlieBlich wird eine 
Methode zur theoretischen Bestimmung des Vorzeichens der Spin-Bahn-Kopplungs-Konstanten an 
verschiedenen Beispielen demonstriert. 

L'hamiltonien relativiste de Pauli-Breit pour l'interaction spin-orbite dans les atomes est adapt6 
pour ~tre utilis6 darts les mol6cules diatomiques. La relation entre l'hamiltonien mol6culaire ainsi 
obtenu et l'op6rateur ph6nom6nologique AL. S est 6tudi6e, et l'on effectue certaines consid6rations 
th6oriques sur l'hypoth6se de pr6cession pure de Van Vleck. On d6duit une formule convenable pour 
le calcul ab initio de la constante de couplage spin-orbite en supposant les fonctions 61ectroniques 
repr6sent6es par un d6terminant de Slater. Enfin, plusieurs exemples permettent de d6montrer une 
m6thode pour la d6termination th6orique du signe de la constante de couplage spin-orbite. 

1. Introduction 

By using the simple sp in-orb i t  coupl ing opera tor  A L .  S Hill  and  Van Vleck [1] 
and  Van  Vleck [2] ob ta ined  theoretical  results for d ia tomic  molecules agreeing 
very well with spectroscopic measurements .  This  is t rue bo th  for the d iagonal  
elements describing the sp in-orb i t  splitting, and  for the off-diagonal elements 
con t r ibu t ing  to the A-doub l ing  and  account ing  for the spin-spli t t ing in mult iplet  
S states. The just i f icat ion for the opera tor  A L .  S is, however, rather  pheno-  
menological ,  and  is main ly  suppor ted  by the analogy with a tomic systems. An 
invest igat ion of the re la t ion between this s impleopera tor  and  a more  fundamenta l  
expression for the sp in-orbi t  H a m i l t o n i a n  therefore seems worthwhile. It might  
be thought  that  the one-centre  opera tor  L(the to ta l  electronic angular  m o m e n t u m )  
should no t  be applicable to a two-centre  system like a d ia tomic  molecule. The 
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interesting thing is however, that molecular states often behave as if they could 
be ascribed a good quantum number for the operator L 2 (pure precession). This 
experimental fact has as yet been given very little theoretical support. 

A usual starting point for calculations concerning spin-orbit interaction seems 
to be the Pauli approximation to the Dirac equation. This leads to a spin-orbit 
interaction operator of the form 

h 
//so = ~ ~ 0r/(grad Ui x P i), 

where ori denotes the Pauli matrices, U~ the potential and p~ the momentum of 
electron number i. This type of Hamiltonian expressed in cylindrical coordinates 
has for instance been used by Kovacs [3] in calculating perturbations between 
states of different multiplicity. Semi empirical calculations of the spin-orbit 
coupling constant based on a similar Hamiltonian have been carried out by 
Heilmann and Ballhausen [4] and by Ishiguro and Kobori [5]. 

An obvious shortcoming of using the operatur//so for more than one electron, 
is the potential U~ which in this case has to be replaced by a mean potential, i.e. 
a one-electron operator, while a two-electron operator is of course necessary for 
a proper description of the interelectronic interaction. 

As in the work by Blume and Watson for atoms [6] and by Fontana for the 
H 2 molecule [7], the starting point will therefore here be the more fundamental 
Pauli-Breit Hamiltonian [8] for spin-orbit and spin-other-orbit interaction. 
However, this atomic operator must first be adapted for use with diatomic 
molecules. 

In the last part of this paper the emphasis will be put on deriving formulae 
convenient for ab initio calculation of the spin-orbit coupling constant for 
diatomic molecules. These ab initio expressions are then used to demonstrate by 
some simple examples how the sign of the spin-orbit coupling constant may be 
determined for a given configuration. 

2. The Pauli-Breit Hamiltonian 

For the spin-orbit and spin-other-orbit interactions of an atom Bethe and 
Salpeter [-8] and Slater [91 have given the following general Hamiltonian operator 
(see also Blume and Watson [6]) 

~ 1 7 6  ) 
- -  x P i  �9 ( s i  + 2s~). (1) Hs~ = 2 -  ~i r3 !,. s, 2 ~ ri~ �9 i,j(ig:j) \ ij 

The summations are here to be extended over all electrons, Pi, li and si are 
respectively the momentum, the angular momentum and the spin of electron 
number i, the distance between electron number i and the nucleus is designated 
by r~ and r~j is the interelectronic distance. As usual ~ is the fine structure constant 
(Hartree atomic units) and Z gives the nuclear charge. The physical interpretation 
of the individual terms of Eq. (1) is rather clear. The first sum represents the 
spin-orbit coupling of each electron in the Coulomb field of the nucleus. In the 
second double summation the first term with the factor s~, is the spin-orbit 
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Fig. 1. D i s t ance  vectors  in a d i a t o m i c  molecule  

coupling of electron i in the Coulomb field of electron j, and the second term with 
the factor sj is due to the interaction of the spin of electron j with the orbital 
current of electron i. 

The general formula (1) for spin-orbit and spin-other-orbit interaction may 
also be extended to molecules, with the one modification that all nuclei must be 
taken into account when calculating the first sum. The following treatment will, 
however, be restricted to diatomic molecules. 

To derive a suitable expression for the spin-orbit and spin-other-orbit 
Hamiltonian for a diatomic molecule, Fig. 1, defining some distance vectors that 
are to be used, will be of great use. In Fig. 1 the two nuclei are numbered 1 and 2, 
CM denotes the centre of mass of the nuclei and two arbitrary electrons are 
numbered i and j. The following connections between the vectors are taken 
straight out of the figure 

r i j  = r i l  - -  r j l  = r i2  - -  r j 2 ,  

Pil = R + ri2 , (2) 
r j l  = g d- r j 2  . 

By introducing the angular momenta 

l i l =  t i t  • P i ,  li2 = r i2  • P l  , (3) 

the first sum of Eq. (1) may be replaced by the two sums (one for each nucleus) 

ct2 Z1 ~2 _ Z2 
HsoN= ~-~(raxp,) .s,+~-~i2 (rzzxp,).s,. (4) 



Interaction in Diatomic Molecules 371 

It will here be desirable to introduce the total angular momentum of the electrons, 
but this seems to be a bit complicated due to the lack of a unique origin. In a 
diatomic molecule only the component of the total electronic angular momentum 
along the molecular axis is quantized, and this component is independent of the 
origin as long as this is chosen on the internuclear axis. The introduction of the 
total electronic angular momentum in the description of the spin-orbit and spin- 
other-orbit coupling of a diatomic molecule, will therefore require the common 
origin of angular momenta to be placed somewhere on the internuclear axis, and a 
natural choice seems to be the centre of mass of the nuclei. 

Noticing that the vector Rc~ fixes the centre of mass (CM) relative to nucleus 1, 
the following relations are obvious by considering Fig. 1. 

ril -- Rc~ + ri, ri2 = RcM -- R + r i 
(5) 

rj l  = Rcg + r j ,  P j2 ~ RCM -- g -~ r j .  

The angular momentum of the electrons relative to CM will now be defined by 

I i = r i x P i .  (6) 

This definition may look a bit artificial for electrons in the inner filled shells, 
which even for molecules may be considered as "'belonging" to one of the nuclei. 
It is however, at this moment unnecessary to worry about the physical inter- 
pretation of Eq. (6); it should rather be considered as a mathematical entity to 
be introduced in the fundamental spin-orbit Hamiltonian. The derivation which 
follows will make it clear that the choice of reference point in Eq. (6) can have 
no influence on the results as long as it is chosen to be on the internuclear axis. 

By using Eqs. (1), (4), (5), and (6) the following general expression for the 
spin-orbit and spin-other-orbit Hamiltonian for a diatomic molecule may be 
derived in terms of the electronic angular momenta referred to the centre of mass 
of the nuclei 

Hso = ~ ~(i,j) I i " Sj 
i , j  

~2 [ RcM X pi -}- Z2 (RcM_ R) x pi ] + (7) 

~2 r j x Pl 
+ 7 -  y~ - -  (s, + 2s~) 

i,j{i~j~ Irial 3 

Eq. (7) has been abbreviated by using the symbol ~(i,j) which has the meaning 

~2 ( 2 1  Z2 - E 1 )  
~(i ' i )= 2 \[Rc~a+rll 3 + IRcM--R+riP jtj~i) 7 ' 

c~ = (8) 

{(i,j) = r ~  (i # j ) .  

{(i, i) and {(i,j) (i r  are evidently independent of the choice of origin for the 
angular momenta as the only relevant distances are the distance between electron 
and nucleus and the interelectronic distance. 
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The last three sums of Eq. (7) are of special interest. By taking the mean value 
over the electronic state, the first two of these sums will obviously vanish because 
the mean value of the momentum of an electron in a bound state is zero. The 
same argument may also be applied to show that even the last sum in Eq. (7) 
will vanish in the mean (see also Fontana [7]). 

The only part of the Hamiltonian (7) that "survives" when taking the mean 
value over the electronic state is therefore 

H~o = ~ r l i 's j .  (9) 
i , j  

Even in this operator (9) only the components of I i and sj along the molecular 
axis (z-components) will on an average give a contribution different from zero. 
Since these components, just as ~(i, j), are independent of where on the internuclear 
axis the origin of angular momenta is situated, it follows that the operator (9) 
too is independent of this choice. The conclusion is therefore that the Hamiltonian 
(9), which corresponds to the experimental spin-orbit splitting, may be given in 
terms of the angular momenta of the electrons referred to a common arbitrary 
origin on the internuclear axis. 

The contribution to the Hamiltonian (9) due solely to the electronic charges 
is given by 

c~2 ( 11_ Ili" _ ~2 1 - - - Z  Z r jj Z (m) H~~ 2 i j(j=/=i) i,j(i~=j) ij 

The first of these sums represents the contribution to the spin-orbit interaction 
due to the Coulomb field of the electrons, while the second sum is the spin-other- 
orbit interaction. 

An expression of the type ~ ~(ri) li" sl is often taken as a fundamental form 
i 

of the spin-orbit Hamiltonian (for instance Kovacs [3], Heilmann and Ball- 
hausen [4]), with the underlying assumption that each electron moves in a field 
axially symmetric about the internuclear axis. The simple and general Hamiltonian 
(9) is, however, derived without this symmetry assumption, and in addition the 
spin-other-orbit interaction is included by the terms ~(i,j) li.sj for i# j .  

3. Matrix Elements of the Spin-Orbit and Spin-Other-Orbit Hamiltonian 

In connection with perturbation calculations, both diagonal and off- diagonal 
matrix elements of the spin-orbit and spin-other-orbit Hamiltonian will be needed. 
Off-diagonal elements enter particularly in the calculation of A-doubling and spin- 
splitting (Z states), while the diagonal elements are responsible for the spin-orbit 
splitting. Calculations in this field have hitherto been carried out by assuming the 
rather phenomenological form A L. S for the spin-orbit coupling operator (Hill 
and Van Vleck [1], Van Vleck [2]). L and S denote here the total electronic angular 
momentum and the total electronic spin respectively, A is usually called the spin- 
orbit coupling constant. It should be of some interest to see how these matrix 
elements come out if one takes the general Hamiltonian (7) as the starting point. 
The electronic eigenfunctions will further be specified to be Hund's case (a) 
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functions, as this is the type of function used by VanVleck [2]. Hund's case (a) 
functions may be written symbolically in the form 

re, = IqAZS)  , (11) 

where A is the quantized component along the internuclear axis of the total 
electronic angular momentum, S denotes the total electronic spin with component 
2; along the molecular axis, and q represents the other quantum numbers 

necessary to specify the electronic state. 
As a first approximation only the first sum of the operator (7) (i.e. Eq. (9)) 

will be considered, as the treatment of this part can serve as a demonstration of 
the method of calculation. An off-diagonal element of this operator is given by 

M 1 = (qAZS[  ~ ~(i,j)l, . s j l q 'A 'S 'S ) ,  (12) 
i , j  

which may be rewritten as 

M 1 = ( q A S S  I ~ ~(i,j) [�89 sj_ +�89 + llzsj~] Iq 'A'S'S) .  (13) 
i , j  

Using the Wigner-Eckart theorem (see for instance Tinkham [10]) this expression 
is further transformed into 

M I = ( q A [  ~ I �9 �9 ~r (qS II sj II q'S) li+ I q'A') ( S S I S _  IS'S)  
i , j  

+ ( q h l ~ ' l  i �9 , , ~ r  (14) 
i , j  

+ (qA[ ~ r (qS I[ sj [I q'S) l,~ I q'A') (SSISz  IX'S) .  
i , j  

In Eq. (14) the reduced matrix element (qS[] sj 1[ q'S) has been introduced (see 
Tinkham [10]) by the relation (qSSls j+ [q'S'S) = (qS II s3 II q'S) ( s s I s §  IS'S). 
/i+, l~_, sj+ and s t_ denote the usual step up and step down operators. The 
electronic functions have further been simplified by writing ]qA) (q orbital 
quantum numbers only) and Iq~S) (q spin quantum numbers only) depending 
on the type of quantum numbers of importance for the actual matrix element. 

The rather complicated Eq. (14) may be written in a more compact form by 
defining the components of a vector operator A in the following way 

A+ = ~ ~(i,j) (qS II st 11 q'S) l,+, 
i , j  

A_ = ~ ~(i,j) (qS II s i[I q'S)l~_, (15) 
i , j  

A~ = ~ ~(i,j) (qS II sj II q'S) liz. 
i , j  

According to the usual rules for matrix multiplication Eq. (14) is transformed into 

M1 = (qASSI �89  Iq'A'S'S) 

+ (qASSI �89  S+ Iq'Z'S'S) (16) 

+ (qAZSI  A~SzIq'A'S'S).  
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Returning to the general Hamiltonian (7), it is easily seen that the last three 
sums hitherto neglected may be treated in exactly the same way as the term 

~(i,j)li.s j. Since these sums only contain scalar products between orbital- 
i , j  

and spin vectors, they may be transformed into an analogue of Eq. (16), the only 
difference lies in a redefinition of the operator A. Therefore, if the vector operator 
A is chosen in the prescribed way, Eq. (16) will give the most general expression 
for the matrix elements (for A S = 0) of the general spin-orbit and spin-other- 
orbit Hamiltonian (7). 

The matrix element of the phenomenological operator AL. S corresponding 
to Eq. (16) will be 

(qAZSI AL. S [q'A'Z'S) 

= (qAZSi�89 ]q'A'Z'S) 
(17) 

+ (qANSI�89 Iq'A'Y,'S> 

+ (qA2S[ AL~Szlq'A'Z'S). 

A comparison between Eq. (16) and Eq. (17) now shows that these expressions 
are formally identical. It is thereby proved that the simple replacement operator 
AL. S in the perturbation calculation (assuming A S = 0) will give energy formulae 
of exactly the same form as the general Hamiltonian (7). The only difference will 
appear in the definition and meaning of the usually experimentally determined 
parameters entering into these formulae. 

The results given by Van Vleck [2] are simplified by noticing that the operators 
AL~, and ALy are equivalent in all respects. This simplification is also possible 
for the matrix element (16) since the operators A x and Ay are equivalent in the 
same way as ALx and ALy. 

4. Considerations Concerning the Hypothesis of Pure Precession 

The derivation leading up to Eq. (16) gives a definition of the operator A 
that will be too complicated for quantitative computations of for instance the 
spin-orbit coupling constant. In what follows the calculations therefore will be 
of a less general kind, i.e. some restrictions will be put on the electronic eigen- 
functions [qAZS), while still retaining Hund's case (a) structure. 

As is well-known, the square of the total electronic angular momentum L 2 
will generally not be quantized in a diatomic molecule, but what is equally well- 
known, is that molecular states often behave as if their total electronic angular 
momentum could be ascribed a good quantum number (pure precession). A 
natural procedure would therefore be to try to replace the orbital electronic 
function lqA) by a series expansion in eigenfunctions of L 2, i.e. functions of the 
type ]qAL). With reference to Mustelin [11] the following starting point will be 
adopted 

IqA) = ~ aq.~LIqAL) (L ~ A). (18) 
L 
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Let R be the operator reflecting the electrons in a plane containing the molecular 
axis. R operating on the function }qA) gives the result 

R [qa) = f Iq - A ) ,  (19) 

where f is a phase factor. Since the operation of reflecting the electrons is the same 
as changing the coordinate system from a right handed to a left handed or vice 
versa, the expansion coefficients for ]q - A) must be the same as those for IqA), i.e. 

Iq - A )  -=- ~ aqa Llq - A L )  . (20) 
L 

According to Mustelin [11] the following relation holds true 

R IqAL)  = ( -  1)-L+Aw] q -- A L ) ,  (21) 

where w is a phase factor depending only on quantum numbers contained in the 
symbol q. Applying R to Eq. (18) and taking into account Eqs. (19), (20) and (21), 
it follows that in the series expansion (18) the values of L must be either all even 
or all odd. Otherwise an alternating sign would occur in the expansion of the 
function Lq - A ) ,  disagreeing with Eq. (20). 

Reintroducing the spin quantum numbers into the function designation, the 
functions that from now on will be used are obtained 

IqASS)  = ~ aqALIqALSS) (L >= A).  (22) 
L 

It should here be restated that L is to run over even numbers only or odd numbers 
only. 

Rather than using the functions (22) to calculate matrix elements of the 
general Hamiltonian (7), the procedure will here be simplified by taking instead 
the operator (9) as the starting point. This is correct for diagonal elements, and 
is in fact no restriction for off-diagonal elements (A S--= 0) because the treatment 
could easily be extended to the Hamiltonian (7),just as in the derivation of Eq. (16). 

The matrix element to be calculated is the following 

M 2 = (qAXSI  ~ ~(i,j)l,. sj[q'A'S'S> 
i , j  

(23) 
= 2 a*ALaq'A'L' ( q A L S S [  2 ~(i'j)li " s j Iq 'A 'ES 'S) .  

L , E  i , j  

It is now assumed that L and L' both are to run over even values only or both 
over odd values only. This must obviously be the case ira relation of pure precession 
(or approximate pure precession) exists between the states IqASS)  and ]q'A'S'S). 
Due to this restriction the only posible values of E in Eq. (23) are E = L, L __ 2, 
L__ 4, etc., and as the operator involved in the matrix element (23) consists of 
vector operators, only E -- L can give a non-vanishing contribution to the matrix 
element. According to this statement Eq. (23) is transformed into 

M2 = ~, aq*ALaq,A, L ( q A L S S I  ~ ~(i,j)! i �9 s j [q 'A 'LS 'S)  . (24) 
L i , j  
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The Wigner-Eckart theorem may now be used both for the orbital- and spin 
part of the operator, and the result is 

M2 = ~ (ALS`SI L. S [A'LZ'S) a~ALaq,A, L 
L (25) 
�9 ~ (qL ]] ~(i,j)l i ][ q'L). (qS [[ sj [] q'S). 

i , j  

(qL 11 ~(i,j) li II q'L) and (qS II sj If q'S) are the reduced matrix elements of the orbital- 
and spin parts of the operator. 

It is convenient to make Eq. (25) more compact by writing 

M 2 = ~, (ALS`S]A(L)L. SIA'LS`'S) (26) 
L 

and 

A(L) = aq*La~,a, L ~ (qL I[ ~(i,j)li [I q'L) (qS [I s: I[ q'S) . (27) 
i , j  

It should now be pointed out that the general Hamiltonian (7) would lead 
to a result differing from Eq. (25) or Eq. (26) only by some additional orbital 
reduced matrix elements coming from the last three sums of Eq. (7), and this 
would only alter the definition of the parameter A(L). The matrix element (26) 
may therefore be ascribed tO the general Hamiltonian (7), however, with attention 
called to the assumption immediately following Eq. (23). Comparing Eq. (26) with 
the corresponding matrix element of the simple operator AL. S, the close similarity 
is easily recognized. The only difference is the summation over the quantum 
number L in Eq. (26), and that the parameter A(L) corresponding to the spin- 
orbit coupling constant A, is now a function of L. 

Because of their correspondence to the experimental spin-orbit splitting, the 
diagonal elements are of special interest. These elements are obtained by putting 
q ' =  q, A : A' and Z = S '̀ into Eqs. (26) and (27). It is further recognized that in 
this case (ALS`S[ L. S [AL Z S)  = <AS,[ LzS z [AS`), i.e. the diagonal elements are 
independent of the quantum number L, and therefore the diagonal matrix element 
(26) may be written 

M3 = (ASI  LzSz IAS`) �9 ~ A(L). (28) 
L 

All that is now needed to bring the diagonal matrix element (28) of the Hamiltonian 
(7) into agreement with the corresponding element of the operator AL. S, is the 
replacement of the spin-orbit coupling constant A by ~, A(L), i.eA = ~ A(L). 

L L 

The united atom eigenfunctions corresponding to a Hamiltonian Ho will also 
be of the form [qAL). If the molecule is to be formed by separating the nuclei, 
a perturbation operator V must be added to the united atom Hamiltonian H o, 
and a particular united atom function (zero order) [qALo) may be mixed with 
functions of other L-values, i.e. [qALo)' = ~, aqA L [qAL). The coefficients aqa L 

L 

(L # L0) are determined by matrix elements of the type (qALo[ V[qAL).  
The perturbation operator V may be expanded in a series of spherical tensors 

of increasing rank. Due to the restriction L = L o, Lo +_ 2, etc. the first rank tensor 
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gives no contribution to the off-diagonal coefficients mixing states of unequal L. 
In a domain where the convergence of the series for V is rapid, good quantum 
numbers L are therefore to be expected. As the convergence for V is assumed to 
be rapid especially for small internuclear distances, this gives theoretical support 
for the experimental fact that the pure precession relation is as a rule best fulfilled 
for molecules of small internuclear distance, for instance for the hydrides. 

As an illustration of this convergence, consider the perturbing operator V for 
a diatomic molecule composed of atoms of very unequal nuclear charges (for 
instance hydrides). Placing the origin in the nucleus of highest charge number, 
the first and second rank contributions to V are obtained by a Taylor series 
expansion to the second order, 

1 / Rz i 3 RZz 2 ) 
V ~ - - ~ - ~ i ~ +  2 r 4 _" 

In this case it is thus easily seen that a small internuclear distance R (i.e. R ~ r~) 
leads to a rapid convergence of the series. 

For large internuclear distances the configuration interaction hitherto neg- 
lected, may also lead to a mixing of states of unequal L. This is due to the phase 
factor w in Eq. (21) which may differ for different configurations, allowing some 
configurations with odd values of L and other with even values. If however, the 
included configurations contain all even values of L or all odd values, nothing 
concerning the quantization of L will be altered. The derivation of the formulae 
(26) and (28) could even be generalized by taking this type of configuration inter- 
action into account, and the only alteration of the formulae would be an additional 
sum running over q and q'. 

5. Formulae for ab initio Calculation of the Spin-Orbit Coupling Constant 

So far the purpose of this paper has been to investigate the relations between 
the phenomenological spin-orbit coupling operator AL. S and the fundamental 
Pauli-Breit Hamiltonian (1). This investigation has also made possible some 
considerations concerning the theoretical basis of the hypothesis of pure precession. 

In the treatment to follow the emphasis will be put on obtaining "'practical" 
formulae for the spin-orbit coupling constant, i.e. formulae convenient for 
qualitative as well as quantitative considerations. As the formulae (27) and (28) 
don't look very useful for this purpose, a fresh start will be made from the 
Hamiltonian (9). Since only diagonal elements now need to be considered, this 
is a proper Hamiltonian. Only the components of li and s~ along the molecular 
axis (z-components) contribute to the diagonal elements, and the treatment will 
therefore be restricted to these components. The electronic eigenfunctions will 
from now on be designated by LqAZS), and this implies that no quantization of 
the total electronic angular momentum is assumed. The derivation of the desired 
formulae requires a further specification of these functions. 

As a first starting point electronic functions in the form of a simple product 
of one-electron molecular orbitals (Hartree-product) will be assumed, each MO 
being an eigenfunction for li~ and sj~ with eigenvalues m i and aj respectively. 
26 Theoret. chim. Acta (Berl.) Vol. 18 
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The diagonal element of the Hamiltonian (9) may then be written 

(AZ[ LzS~ lAX) ~ (qAS, SI ~(i,j)lizSjz ]qAS`S). (29) 
M,, = AS, i. j 

The factor (ASI L~Sz lAY,) AS = 1 has been included for a simple identification of 

the spin-orbit coupling constant which, with reference to Eq. (28), is now given by 

AN i,j (qAs`Sl~(i'j)li~sj~IqA r~S)" (30) 

Eq. (30) is easily transformed into 

A = - - -~  .~ <qASS[ ~(i,j)]qASS> mlaj. (31) 
l , J  

As will be seen later it is convenient to rewrite Eq. (8) as follows 

~(i, i) = rl(i ) + ~(i,j), 
2 j(jg:i) (32) ~( z~ z~ ) 

~/(i)=-~- ]Rcm+ril3 + i R c m - ~ + r i [ a "  

If the molecular orbital for electron number i with quantum numbers m~ and a i 
is denoted by c~i(i), the following result is obtained 

( qAS` SI ~(i, i) lq A S  S) = ei + 7ij , (33) 
2 jug:i) 

where e~ and 7~j are to be replaced by 

o~ i = (4)i(i), rl(i ) c~,(i)) (34) 
V,j = (~b,(i) ~bj(j), ~(i,j)c~,(i)g)jq)) (i r  

The following final expression for the spin-orbit coupling constant given by 
Eq. (31) is then obtained 

1 ~ ,,j)mi~r,+ Z ,,jm, aj]. (35) 

Remembering that the formulae (30) and (31) contain two-electron operators, 
the formula (35) obtained by using Hartree-functions is expected to be a rather 
rough approximation. However, it turns out that the one-electron contributions, 
since they are due to the nuclear charges, outweigh the two-electron terms. So 
the rather simple formula (35) ought to be of some value for qualitative considera- 
tions or rough quantitative calculations. If a higher degree of accuracy is required, 
the electronic functions should be replaced by an antisymmetric product of one- 
electron molecular orbitals (Hartree-Fock functions), i.e. a Slater determinant. 
To obtain eigenfunctions of the squared total electronic spin S2, linear combinations 
of Slater determinants corresponding to the same value of A and 2; will generally 
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be required. Quite often, however, it happens that A and Z have the maximum 
value possible according to the assumed configuration, and in this case only one 
Slater determinant is available for the construction of the proper electronic 
function. 

Assuming the electronic function to be given by just one Slater determinant, 
a formula for the spin-orbit coupling constant A will now be derived by calculating 
the diagonal matrix elements of the Hamiltonian (9). The treatment of this matrix 
element may be simplified by first considering the case i =j ,  giving the result 

<qAZS[ ~, ~(i, i)l,zs~z [qAS, S)  = ~ flkmktrk . (36) 
i k 

flk is here to be replaced by 

flk = ~k + �89 2 (~ki -- Y~,f~k,~,)- (37) 
t(t~ek) 

~k and 7kl are defined as indicated by Eq. (34), while the exchange integral Y~t is 
defined by 

]/kl = (~k(i)~)l(J), ~(i,j)cpt(i)(ak(j)) (i # j) , (38) 

(~k(i) being the one-electron molecular orbital corresponding to the eigenvalues 
m k and trk of the operators l~ and s~. 

The case i ~ j  leads in the same way to 

<qAZS[ ~ ~(i,j)l~s~z[qAS, S>= ~ (Ykl--Y~lt~a~,at)l~rtkffl, (39) 
i , j(i~j) k, l(k~l) 

7kt and ~ being defined by Eqs. (34) and (38). Again including the factor 
<AXIL~S~IAS> 

= 1, the following result is obtained 
A S  

<qASS[ ~ ~(i,j)lizs~z IqAZS> 
i,j 

= A S  flkmkak + ~ (~kl-- ~kl6~,)mk~l . 
k,l(kq:l) 

The spin-orbit coupling constant A is accordingly given by 

A = 1A_f [ ZflkmkGk-'[-k k,l(k~l) ff~" (];kl--]/klSaka')mktTl] " (41) 

Some conclusions concerning the contribution to the spin-orbit coupling 
constant from electrons in filled shells are implicit in the formula (41). First 
consider the summation 

k k k l(lCk) 

Noticing that the parameters ~k, Vkt and V~l all are independent of spin, it follows 
that in the summations ~ o~kmkff k and ~, ~ "~klmktTk it will be sufficient to let k 

k k l(lg:k) 
run over unfilled shells only. This means that the interaction between the nuclear 
charges and electrons in filled shells gives no contribution to the spin-orbit 
26* 
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coupling constant, since the nuclear contribution is represented by the sum 
ekrnkak - 

k 
In the summation ~ (  ~, 7~ld~k~ ] mkak, however, k must be extended also to 

k \ l ( l~ :k )  / 

filled shells if there are electrons in unfilled shells. This is due to the spin dependency 
introduced by the factor 6~k~,, and is closely analogous to a similar result in the 
Hartree-Fock theory (spin-polarized Hartree-Fock). 

In Eq.(41) there now remains the sum ~, (Tk l - -7~J rnk~  ~. Here it is 
k, l(k ~ l) 

easily verified that the sum of all terms where both k and 1 refer to filled shells, 
will vanish. This is, however, not the case when one of the indices k or 1 refers 
to an unfilled shell. The interaction between electrons in filled shells and electrons 
in unfilled shells therefore can contribute to the spin-orbit coupling constant via 
these terms. 

A comparison between Eqs. (35) and (41) shows that Eq. (35) obtained by 
using Hartree-functions, differs from Eq. (41) mainly in that it lacks the exchange 
integrals. The terms containing the parameters 7k~ and 7~ represent the electronic 
screening of the nuclear charges, and must therefore be assumed to give a very 
significant contribution to the spin-orbit coupling constant. Another result is 
that the exchange integral ;)~ tends to be of the same order of magnitude as the 
direct integral 7u (see Walker and Richards [12]). Thus the approximation 
obtained by neglecting the exchange terms will be rather poor. 

The formula (41) should be convenient for ab initio calculations of the spin- 
orbit coupling constant. The problems involved in these calculations will lie 
mainly in carrying out the integrations necessary to determine the parameters 
~k, ~k~ and V~t. A strict determination of the parameters ~kt and ~ requires that 

1 
some hard two-centre integrals of an operator of the type r~- be carried out, 

but it has turned out it is often a fairly good approximation to neglect these 
integrals (see Walker and Richards [12]). With this approximation the remaining 
integrals are taken care of by standard procedures. An extensive treatment of 
two-electron spin-orbit integrals have been given by Matcha et at. [14]. 

The one-electron molecular orbitals q~k(i) may for instance be replaced by self 
consistent LCAO-MO's (Roothaan functions). Hitherto self consistent LCAO- 
MO's have only been calculated for electronic states representable by one Slater 
determinant. So at present the fact that one is restricted to using one Slater 
determinant by formula (41) gives rise to no practical limitations. 

6. The Sign of the Spin-Orbit Coupling Constant 

In fact very little material concerning the theoretical determination of the sign 
of the spin-orbit coupling constant in diatomic molecules has been published. 
The only discussion of the subject found by the present author is in one of 
Mulliken's early papers [13]. But as the latter relies upon a rather intuitive 
model of the coupling, a renewed discussion based on a more fundamental 
model seems worthwhile. The inspiration for this investigation is that the sign 
of the coupling constant can usually be unambiguously determined experimentally. 
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Therefore the existence of a clear theoretical relation between sign and configura- 
tion will help a great deal in the determination of the latter. 

The investigation will be based on Eq. (41) for the spin-orbit coupling constant. 
As the task is now to study a qualitative feature, there is no point in retaining 
all the terms of Eq. (41), and some approximations in the remaining terms will 
also be convenient. The last summation in Eq. (41) representing the spin-other- 
orbit coupling, will be neglected since it is found in practice that the spin-orbit 
coupling (the first summation) outweighs the spin-other-orbit coupling, and 
thereby determines the sign of the coupling constant. So the starting point will be 

1 
A = ~ ~ flkrnk(~k, (42) 

where the summation is assumed to run over unfilled shells only. As a final 
reasonable approximation the values of flk are assumed to be the same for 
equivalent electrons. 

By introducing the new symbols a k and b k defined by a k = m k / A  and bk = ak/Z ,  

Eq. (42) can be rewritten 

A = ~ flkakbk . (43) 
k 

The point in introducing the symbols a k and b k is that the following simple 
relations 

a k = 1, 2 bk = 1, (44) 
k k 

are valid even when the summations are restricted to unfilled shells only. Of 
course it is assumed here that A and 2; are both different from zero, otherwise 
there would be no spin-orbit splitting. 

To illustrate how the sign of the coupling constant may be determined from 
Eqs. (43) and (44) and the Pauli principle, it is best to consider some examples. 

Assume first that there is only one electron outside closed shells, and that 
this electron has a quantum number m k = m 1 different from zero. Formula (43) 
gives directly A = fil al bl, and the relation (44) leads to al b 1 > 0, i.e. the result is 
A > 0 if the parameter fi~ is positive. 

Two equivalent electrons outside closed shells lead either to A = 0 or 2; = 0, 
or both A = 0 and 2; = 0, and thereby no spin-orbit splitting. 

The case of three equivalent electrons in addition to filled shells is a more 
interesting example. With a suitable choice of indices the following relations must 
exist according to the Pauli principle, a~ = a 2 = - a  a and b~ = - b  2. By relation 
(44) it then follows that a 3 < 0  and b 3 > 0  , and Eq.(43) gives A = f l 3 a 3 b 3 ,  i.e. 
A < 0 for positive value of fi3. 

Assuming a positive value of the parameter fl (the value of fl will of course 
depend on the configuration) it is thus proved that the value of the spin-orbit 
coupling constant will be positive when there is one electron outside closed 
shells, i.e. when a shell is less than half full. Similarly it is also proved that a 
negative value of the coupling constant is obtained when there are three equivalent 
electrons outside closed shells, i.e. when a shell is more than half full. This result 
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is easily seen to be in close agreement with the corresponding one for atoms 
(Hund's third rule), the difference is, however, that in atoms this rule is restricted 
to the ground state. 

For  the sake of completeness it should be pointed out that the electronic 
states so far treated, are all correctly described by just one Slater determinant. 

Some important  configurations with more than one unfilled shell will also be 
included among the examples. 

The configuration arc implies a 1 = 0 and a z = 1. The possibility bl = - b2 leads 
to Z = 0 and is therefore uninteresting, while b 1 = b2 > 0 gives A = fl2azb a > 0 for 
fi2 > 0. For  a positive value offl2 the 31-1 state derivable from the configuration o- rc 
therefore must be regular (i.e. positive value of A), and similarly the configuration 
a 6 leads to a regular 3A state, etc. 

The configuration arc 3 may be treated in just the same way as the configuration 
7r a, leading to a negative value of the coupling constant, and the same applies to 
the configuration a 63, etc. 

The configuration n2n yields a more complicated example. A division into 
two cases is here convenient 

1) a I = a e, 2) al = - a2 ~ a3 > O, 

bl=-b2---~b3>O, a) b l = b 2 ,  

a) a 3 > 0 ,  b) b l = - b 2 ~ b 3 > O .  

b) a3 < 0, 

The fact that some of the states derivable from the configuration zc2rc must be 
represented by a linear combination of several Slater determinants, prohibits a 
straightforward determination of the sign of the coupling constant by means of 
the relations (43) and (44). The case la) above leads to just one z~ state, while 
the case 2a) gives a 4H state among others. However, each of these two states 
can be represented by just one Slater determinant (for the 4H state X = ~- is 
assumed), and for both states Eq. (43) gives A = f13a363 . In view of la) and 2a) 
above this leads to A > 0 for positive values of fl3- 

The other states derivable from the configuration rr2n are all of the 2/i  type. 
To obtain eigenfunctions for the operator  S 2 these 2/1 states must be represented 
by a linear combination of four Slater determinants (three functions for S = �89 
and one for S = 23-). It is therefore impossible to make any conclusions regarding 
the sign of the coupling constant until the proper linear combinations are 
determined. 

For  a three-electron system Kovfics [3] has given eigenfunctions for S e, and 
he concludes that for the ~2~ configuration two of the 2 / /  states are inverted 
and the third regular. The simple considerations of Mulliken [13] in this case 
lead to the same result, but as eigenfunctions for S 2 are not taken into account, 
this method should be viewed with suspicion in the general case. 

An example of another character is formed by the ZA states derived from the 
c o n f i g u r a t i o n  o-7~ 2. In this case a~ = 0, a 2 = a 3 > 0,  b 2 = - b3 and bx > 0, leading 
to A - - 0  by use of Eq. (43). However, a small negative value of A is usually 
observed for this type of 2A states (Lefebvre-Brion and Bessis [16]), especially 
in light diatomic molecules. This non-zero value of A is assumed to be caused 
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by the terms neglected in Eq. (43), i.e. the last sum in Eq. (41) representing the 
spin-other-orbit coupling (Mulliken [13]). Neglecting the contributions from 
filled shell electrons, the result is A=(2721-7~0azb1. The negative value of 
2~/21 (see Eqs. (8), (34) and (38)) is assumed to outweigh the exchange integral ~1, 
and remembering that azb 1 is positive as stated above, this leads to a negative 
value of the coupling constant. 

In the formula (37) for/3 k the positive parameter c~ k represents the contribution 
from the nuclear charges, while the summation represents the electronic contribu- 
tion. The assumption of a positive value for/~k is now based on another assumption, 
namely that the nuclear contribution outweighs the electronic. This assumption is 
mainly backed up by the fact that in atoms the spin-orbit splitting is usually very 

1 t ~ U(ri) 
well described by the operator --; 2# 2c2 ri ~rl l~- s~ (see Condon and Shortley 

For all reasonable potentials ~ will be positive, reflecting the domina- [153). 

tion of the nuclear charges. 

7. Conclusion 

As pointed out in the introduction, a main purpose of this paper has been to 
investigate the relations between the simple phenomenological operator AL.  S 
and a more fundamental expression for the spin-orbit Hamiltonian. This funda- 
mental Hamiltonian is taken to be the Pauli-Breit operator (1) for spin-orbit and 
spin-other-orbit coupling. 

Considering diagonal elements only (electronic mean values), the operator (9) 
has been derived from the Hamiltonian (1) without any approximations. The 
formula (9) shows that for mean values the "intuitive" operator ~ ~(i,j)li .sj  

i , j  
for spin-orbit and spin-other-orbit coupling is a strict consequence of the Pauli- 
Breit operator. 

For diagonal as well as off-diagonal elements (A S = 0) the formula (16) implies 
the interesting conclusion that the fundamental Pauli-Breit operator leads 
formally to exactly the same results as the simple operator AL.  S. However, 
some of the parameters entering the calculation need to be redefined. 

In view of the experimentally well-verified hypothesis of pure precession, a 
further approach towards the operator AL.  S seems interesting. The point is then 
to introduce the total electronic angular momentum L, and this is obtained by 
the series expansions (18) and (22). By noticing that in these series expansions the 
values for L must be either all even or all odd, theoretical support has been given 
to the hypothesis of pure precession for molecules of small internuclear distance. 

It should be further pointed out that even if the pure precession relation is 
fulfilled, since the value of the entering parameter A(L) is determined by the off- 
diagonal element (27), it will differ from the corresponding experimentally 
determined value of the spin-orbit coupling constant. This distinction should be 
taken into account when disagreements between experimental values and pure 
precession values are considered, for instance in the A-doubling parameters. 
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The other  m a i n  purpose  of this paper  has been the der ivat ion of formulae 
convenient  for ab initio calculat ions  of the spin-orbi t  coupl ing constant .  The most  
significant result here is given by Eq. (41). By the der ivat ion of Eq. (41) the electronic 
funct ions are assumed to be proper ly  represented by jus t  one Slater de te rminan t  
of molecular  orbitals.  Since this is a correct assumpt ion  for most  of the actual  
molecular  states, and  since the actual  electronic funct ions (Roothaan  functions) 
hi therto calculated are of this form, the possibil i ty of taking l inear combina t ions  
of Slater de te rminan ts  in to  account  is no t  considered. 

As a by-produc t  of Eq. (41) a discussion of the sign of the spin-orbi t  coupl ing 
cons tan t  has been included.  This discussion verifies the ma in  results of Mul l iken 's  
simple considera t ions  [13], and  leads to an analogy to H u n d ' s  third rule for 
atoms. Fo r  states that  mus t  be represented by a l inear  combina t ion  of more  than  
one Slater de te rminant ,  Mul l iken ' s  results, however, seem to be doubtful .  

Acknowledgements. The author is greatly indebted to I. Roeggen for his ideas and advices con- 
cerning the material presented in Sects. 3 and 4 of this paper. Improvements are also due to 
Dr. A. Lofthus, whose critical reading of the manuscript is highly appreciated. 

References 

1. Hill, E., Van Vleck, J. H.: Physic. Rev. 32, 250 (1928). 
2. Van Vleck, J. H.: Physic. Rev. 33, 467 (1929). 
3. Kovfics, I.: Canad. J. Physics 36, 309, 329 (1958). 
4. Heilmann, O. J., Ballhausen, C. J.: Theoret. chim. Acta (Berl.) 3, 159 (1965). 
5. Ishiguro, E., Kobori, M.: J. physic. Soc. Japan 22, 263 (1967). 
6. Blume, M., Watson, R. E. : Proc. Roy. Soc. (London) A 270, 127 (1962). 
7. Fontana, P. R.: Physic. Rev. 125, 220 (1962). 
8. Bethe, H.A., Salpeter, E. E.: Quantum mechanics of one- and two-electron atoms. New York: 

Academic Press, Inc. 1957. 
9. Slater, J. C.: Quantum theory of atomic structure, Vol. II. New York: McGraw-Hill 1960. 

10. Tinkham, M.: Group theory and quantum mechanics. New York: McGraw-Hill 1964. 
11. Mustelin, N.: On the coupling of angular momenta in diatomic molecules, with applications 

to the magnetic hyperfine structure. •bo Akademi, Abo 1963. 
12. Walker, T. E. H., Richards, W. G.: Physic. Rev. 177, 100 (1969). 
13. Mulliken, R. S.: Rev. mod. Physics 4, 1 (1932). 
14. Matcha, R. L., Kern, C. W., Schrader, D. M.: J. chem. Physics 51, 2152 (1969). 
15. Condon, E.U., Shortley, G.H.: The theory of atomic spectra. Cambridge: Cambridge Univ. 

Press 1964. 
16. Lefebvre-Brion, H., Bessis, N.: Canad. J. Physics 47, 2727 (1969). 

Professor Leif Veseth 
Institute of Physics 
Universitetet I Oslo 
P.O. Box 1048, Blindern 
Oslo 3, Norway 


